
Core Emotion Framework (CEF): TS

19 Appendix B — Reasoning

Engine Pseudocode
Canonical Execution Logic for the CEF Semantic Inference Layer

Version 1.0 — Phase 4

Author: Jamel Bulgaria

ORCID: 0009-0007-5269-5739

Affiliation: OptimizeYourCapabilities.com

Contact: admin@optimizeyourcapabilities.com

License: CC-BY 4.0

Status: Canonical Appendix (TS-19)

0. Purpose and Canonical Position

Appendix B defines the pseudocode implementation of the CEF Reasoning Engine

described in TS-19.

It provides:

• the canonical execution pipeline

• the internal data structures

• the inference loop

• the constraint-checking logic

• the output generation logic

This appendix introduces no new emotional constructs.

It operationalizes the inference rules defined in TS-19 Appendix A.

1. High-Level Engine Structure

function CEF_ReasoningEngine(inputData):

 validatedData = validateInput(inputData)

https://orcid.org/0009-0007-5269-5739
https://www.optimizeyourcapabilities.com/
file:///C:/Users/nishm/OneDrive/Documents/admin@optimizeyourcapabilities.com

 normalizedState = normalize(validatedData)

 inferredState = infer(normalizedState)

 constrainedState = enforceConstraints(inferredState)

 output = generateOutput(constrainedState)

 return output

The engine always executes in this order:

1. Validation (TS-2 + Appendix D)

2. Normalization (TS-18)

3. Inference (TS-19 + Appendix A)

4. Constraint Enforcement (TS-1 → TS-17)

5. Output Generation (TS-19)

2. Input Validation Layer

function validateInput(data):

 if not conformsToJSONLD(data) and not conformsToRDF(data):

 raise ValidationError("Invalid ontology format")

 if violatesTS2Rules(data):

 raise ValidationError("TS-2 identity/structure violation")

 return data

Validation ensures:

• identity preservation

• no illegal transitions

• no illegal modulation

• no facet migration

• no center blending

3. Normalization Layer

function normalize(data):

 state = new State()

 state.operatorVector = extractOperators(data)

 state.facetVector = extractFacets(data)

 state.centerVector = extractCenters(data)

 state.modulationMatrix = buildModulationMatrix(data)

 state.transitionGraph = buildTransitionGraph(data)

 state.coherenceScalar = computeCoherence(data)

 return state

Normalization ensures:

• canonical ordering

• center fidelity

• no contamination

• consistent internal representation

4. Inference Layer

This is the core of the engine.

function infer(state):

 newState = copy(state)

 newState = inferIdentity(newState)

 newState = inferDirectionality(newState)

 newState = inferModulation(newState)

 newState = inferStability(newState)

 newState = inferPrediction(newState)

 newState = inferPlasticity(newState)

 newState = inferGovernance(newState)

 return newState

Each inference module corresponds to a rule family in Appendix A.

4.1 Identity Inference

function inferIdentity(state):

 for each facetPair (Fi, Fj):

 if Fi.precedes(Fj) and Fj.precedes(Fk):

 infer Fi.precedes(Fk)

 for each operator O:

 infer centerContains(O.center, O)

 return state

4.2 Directionality Inference

function inferDirectionality(state):

 for each transition (A -> B):

 for each transition (B -> C):

 infer A -> C

 return state

4.3 Modulation Inference

function inferModulation(state):

 for each modulation (A -> B):

 for each modulation (B -> C):

 infer A modulates C

 if elasticity(A,B) > threshold:

 infer B modulates A

 return state

4.4 Stability Inference

function inferStability(state):

 for each operator O:

 if O.activationLevel >= 0.8 * O.capacityLimit:

 mark O.stabilityRisk = HIGH

 if O.thresholdSpacing < minimumSpacing:

 mark O.instability = LIKELY

 return state

4.5 Predictive Inference

function inferPrediction(state):

 for each operator O:

 if O.driftVelocity > driftThreshold:

 infer predictsDrift(O)

 for each center C:

 if C.modulationDecayRate > collapseThreshold:

 infer predictsCollapse(C)

 return state

4.6 Plasticity Inference

function inferPlasticity(state):

 for each operator O:

 if cumulativeMicroAdjustments(O) > microShiftThreshold:

 infer longTermShift(O)

 if O.facetReorderingDelta > safeLimit:

 rejectFacetReordering(O)

 return state

4.7 Governance Inference

function inferGovernance(state):

 for each operator O:

 if O.stabilityRisk == HIGH and O.selfCorrectionGain >= correctionThreshold:

 infer selfCorrects(O)

 for each center C:

 if C.coherenceScalar < minimumCoherence and C.coherenceProtectionFactor >=

protectionThreshold:

 infer selfProtects(C)

 return state

5. Constraint Enforcement Layer

function enforceConstraints(state):

 if violatesIdentity(state):

 rollbackInference(state)

 if violatesDirectionality(state):

 rollbackInference(state)

 if violatesModulationRules(state):

 rollbackInference(state)

 if violatesFacetBoundaries(state):

 rollbackInference(state)

 if violatesGovernanceRules(state):

 rollbackInference(state)

 return state

This ensures:

• no illegal inferences

• no contamination

• no drift beyond canonical limits

6. Output Generation Layer

function generateOutput(state):

 output = {}

 output.inferredTransitions = state.transitionGraph

 output.inferredModulation = state.modulationMatrix

 output.stabilityAssessment = computeStabilitySummary(state)

 output.predictiveSignals = extractPredictions(state)

 output.governanceActions = extractGovernance(state)

 return output

Outputs must be:

• canonical

• identity-preserving

• center-bounded

• contamination-free

7. Canonical Status

Appendix B is the authoritative pseudocode specification for TS-19.

It defines the execution logic that implements the inference rules of Appendix A on

the ontology defined in TS-18.

It is subordinate only to:

• Core Essence Document

• TS-1 → TS-19

