Core Emotion Framework (CEF): TS
19 Appendix B — Reasoning
Engine Pseudocode

Canonical Execution Logic for the CEF Semantic Inference Layer
Version 1.0 — Phase 4

Author: Jamel Bulgaria

ORCID: 0009-0007-5269-5739

Affiliation: OptimizeYourCapabilities.com
Contact: admin@optimizeyourcapabilities.com
License: CC-BY 4.0

Status: Canonical Appendix (TS-19)

0. Purpose and Canonical Position

Appendix B defines the pseudocode implementation of the CEF Reasoning Engine
described in TS-19.

It provides:
e the canonical execution pipeline
« theinternal data structures
o theinference loop
e the constraint-checking logic
o the output generation logic

This appendix introduces no new emotional constructs.
It operationalizes the inference rules defined in TS-19 Appendix A.

1. High-Level Engine Structure
function CEF_ReasoningEngine(inputData):

validatedData = validatelnput(inputData)


https://orcid.org/0009-0007-5269-5739
https://www.optimizeyourcapabilities.com/
file:///C:/Users/nishm/OneDrive/Documents/admin@optimizeyourcapabilities.com

normalizedState = normalize(validatedData)
inferredState = infer(normalizedState)
constrainedState = enforceConstraints(inferredState)
output = generateOutput(constrainedState)
return output
The engine always executes in this order:

1. Validation (TS-2 + Appendix D)

2. Normalization (TS-18)

3. Inference (TS-19 + Appendix A)

4. Constraint Enforcement (TS-1 - TS-17)

5. Output Generation (TS-19)

2. Input Validation Layer
function validatelnput(data):
if not conformsToJSONLD(data) and not conformsToRDF(data):

raise ValidationError("Invalid ontology format")

if violatesTS2Rules(data):

raise ValidationError("TS-2 identity/structure violation")

return data
Validation ensures:
e identity preservation
e noillegal transitions
e noillegal modulation
e no facet migration

e no center blending



3. Normalization Layer
function normalize(data):

state = new State()

state.operatorVector = extractOperators(data)
state.facetVector = extractFacets(data)
state.centerVector = extractCenters(data)
state.modulationMatrix = buildModulationMatrix(data)
state.transitionGraph = buildTransitionGraph(data)

state.coherenceScalar = computeCoherence(data)

return state
Normalization ensures:
e canonical ordering
o center fidelity
e no contamination

e consistent internal representation

4. Inference Layer
This is the core of the engine.
function infer(state):

newState = copy(state)

newState = inferldentity(newState)
newState = inferDirectionality(newState)
newState = inferModulation(newState)
newState = inferStability(newState)

newState = inferPrediction(newState)



newState = inferPlasticity(newState)

newsState = inferGovernance(newState)

return newState

Each inference module corresponds to a rule family in Appendix A.

4.1 Identity Inference
function inferldentity(state):
for each facetPair (Fi, Fj):
if Fi.precedes(Fj) and Fj.precedes(Fk):

infer Fi.precedes(Fk)

for each operator O:

infer centerContains(O.center, O)

return state

4.2 Directionality Inference
function inferDirectionality(state):
for each transition (A -> B):
for each transition (B -> C):

infer A->C

return state

4.3 Modulation Inference

function inferModulation(state):

for each modulation (A -> B):



for each modulation (B -> C):

infer A modulates C

if elasticity(A,B) > threshold:

infer B modulates A

return state

4.4 Stability Inference
function inferStability(state):
for each operator O:
if O.activationLevel >= 0.8 * O.capacityLimit:

mark O.stabilityRisk = HIGH

if O.thresholdSpacing < minimumSpacing:

mark O.instability = LIKELY

return state

4.5 Predictive Inference
function inferPrediction(state):
for each operator O:
if O.driftVelocity > driftThreshold:

infer predictsDrift(O)

for each center C:
if C.modulationDecayRate > collapseThreshold:

infer predictsCollapse(C)



return state

4.6 Plasticity Inference
function inferPlasticity(state):
for each operator O:
if cumulativeMicroAdjustments(O) > microShiftThreshold:

infer longTermShift(O)

if O.facetReorderingDelta > safeLimit:

rejectFacetReordering(O)

return state

4.7 Governance Inference
function inferGovernance(state):
for each operator O:
if O.stabilityRisk == HIGH and O.selfCorrectionGain >= correctionThreshold:

infer selfCorrects(O)

for each center C:

if C.coherenceScalar < minimumCoherence and C.coherenceProtectionFactor >=
protectionThreshold:

infer selfProtects(C)

return state

5. Constraint Enforcement Layer



function enforceConstraints(state):
if violatesldentity(state):

rollbackinference(state)

if violatesDirectionality(state):

rollbackinference(state)

if violatesModulationRules(state):

rollbackinference(state)

if violatesFacetBoundaries(state):

rollbackinference(state)

if violatesGovernanceRules(state):

rollbackinference(state)

return state
This ensures:
e noillegal inferences
e no contamination

e no drift beyond canonical limits

6. Output Generation Layer
function generateOutput(state):

output = {}

output.inferredTransitions = state.transitionGraph

output.inferredModulation = state.modulationMatrix



output.stabilityAssessment = computeStabilitySummary(state)
output.predictiveSignals = extractPredictions(state)

output.governanceActions = extractGovernance(state)

return output
Outputs must be:
e canonical
e identity-preserving
e center-bounded

e contamination-free

7. Canonical Status

Appendix B is the authoritative pseudocode specification for TS-19.
It defines the execution logic that implements the inference rules of Appendix A on
the ontology defined in TS-18.

It is subordinate only to:

e Core Essence Document

e TS-1->TS-19



