
Core Emotion Framework (CEF): TS

20 Appendix B — Query Language

Specification
Canonical Query Model for the CEF Knowledge Graph (CEF-KG)
Version 1.0 — Phase 4

Author: Jamel Bulgaria

ORCID: 0009-0007-5269-5739

Affiliation: OptimizeYourCapabilities.com

Contact: admin@optimizeyourcapabilities.com

License: CC-BY 4.0

Status: Canonical Appendix (TS-20)

0. Purpose and Canonical Position

Appendix B defines the canonical query language for interacting with the CEF

Knowledge Graph (CEF-KG) described in TS-20.

It specifies:

• the allowed query types

• the canonical query operators

• the constraints on query execution

• the structure of valid query responses

• the rules for identity-preserving graph traversal

This appendix introduces no new emotional constructs.

It defines how the CEF-KG may be queried, not what it contains.

1. Query Language Overview

The CEF-KG Query Language (CEF-QL) is:

• declarative

https://orcid.org/0009-0007-5269-5739
https://www.optimizeyourcapabilities.com/
file:///C:/Users/nishm/OneDrive/Documents/admin@optimizeyourcapabilities.com

• constraint-preserving

• identity-safe

• center-bounded

• modulation-aware

• directionality-aware

It is inspired by:

• SPARQL (semantic-web queries)

• Cypher (graph traversal)

• Datalog (logical inference)

But it is not identical to any of them.

CEF-QL is tailored to the CEF’s canonical constraints.

2. Query Types

CEF-QL supports six canonical query types:

1. Identity Queries

2. Structural Queries

3. Dynamic Queries

4. Predictive Queries

5. Plasticity Queries

6. Governance Queries

Each type is defined below.

3. Identity Queries

Identity queries retrieve operators, facets, and centers.

3.1 Example — Retrieve all facets of Sensing

SELECT Facet

FROM Operator("Sensing")

RETURN hasFacet(Facet)

3.2 Example — Retrieve the center of an operator

SELECT Center

FROM Operator("Deciding")

RETURN belongsToCenter(Center)

Constraints

• Operator IDs must be canonical.

• Facet IDs must be canonical.

• No new entities may be introduced.

4. Structural Queries

Structural queries retrieve transitions, facet ordering, and center membership.

4.1 Example — Retrieve all successors of Calculating

SELECT Successor

FROM Operator("Calculating")

RETURN canonicalSuccessor(Successor)

4.2 Example — Retrieve facet ordering

SELECT F1, F2

FROM Operator("Expanding")

WHERE facetPrecedes(F1, F2)

RETURN F1, F2

Constraints

• Must follow TS-1 directionality.

• Must follow TS-11 facet ordering.

• No reversed transitions allowed.

5. Dynamic Queries

Dynamic queries retrieve modulation and transition behavior.

5.1 Example — Retrieve all operators modulated by Expanding

SELECT Target

FROM Operator("Expanding")

RETURN modulates(Target)

5.2 Example — Retrieve transition parameters

SELECT Smoothness, Lag, Resistance

FROM Transition("Sensing", "Calculating")

RETURN transitionSmoothness(Smoothness),

 transitionLag(Lag),

 transitionResistance(Resistance)

Constraints

• Must follow TS-3 modulation rules.

• No illegal modulation pathways.

• No cross-center violations.

6. Predictive Queries

Predictive queries retrieve drift, collapse, and overflow predictions.

6.1 Example — Retrieve all predicted collapse centers

SELECT Center

FROM PredictiveIndicator("ModulationDecay")

RETURN predictsCollapse(Center)

6.2 Example — Retrieve drift trajectory

SELECT Operator

FROM PredictiveIndicator("ThresholdCreep")

RETURN predictsDrift(Operator)

Constraints

• Must follow TS-13 predictive logic.

• Must not contradict TS-12 stability rules.

7. Plasticity Queries

Plasticity queries retrieve micro-adjustments and facet reordering.

7.1 Example — Retrieve micro-adjustment parameters

SELECT Step

FROM PlasticityParameter("Deciding")

RETURN microAdjustmentStep(Step)

7.2 Example — Retrieve facet reordering deltas

SELECT Delta

FROM PlasticityParameter("Arranging")

RETURN facetReorderingDelta(Delta)

Constraints

• Must follow TS-16 plasticity limits.

• No facet inversion allowed.

8. Governance Queries

Governance queries retrieve self-correction, balancing, and coherence protection.

8.1 Example — Retrieve self-correction signals

SELECT Operator

FROM GovernanceSignal("SelfCorrectionGain")

RETURN selfCorrects(Operator)

8.2 Example — Retrieve coherence protection factors

SELECT Factor

FROM GovernanceSignal("CoherenceProtectionFactor")

RETURN coherenceProtectionFactor(Factor)

Constraints

• Must follow TS-17 governance rules.

• No coherence violations allowed.

9. Query Operators

CEF-QL supports the following canonical operators:

• SELECT — retrieve entities or parameters

• FROM — specify the node or class

• WHERE — apply constraints

• RETURN — specify output

• FILTER — restrict results

• PATH — retrieve multi-step transitions or modulation chains

• LIMIT — restrict output size

Example — Retrieve all multi-step successors of Sensing

PATH Sensing ->* Successor

RETURN Successor

10. Canonical Constraints of Appendix B

All queries must:

• preserve identity

• preserve facet boundaries

• preserve center architecture

• preserve directionality

• preserve modulation legality

• preserve stability

• preserve predictive logic

• preserve plasticity limits

• preserve governance rules

Queries must never:

• introduce new operators

• introduce new facets

• introduce new centers

• violate TS-1 → TS-20

11. Canonical Status

Appendix B is the authoritative query language specification for TS-20.

It defines how the CEF-KG must be queried in all computational, semantic, and

reasoning contexts.

It is subordinate only to:

• Core Essence Document

• TS-1 → TS-20

