
Core Emotion Framework (CEF): TS 

21 Appendix A — Population 

Pipeline Pseudocode 
Canonical Execution Logic for CEF-KG Population & Integration 

Version 1.0 — Phase 4 

 

Author: Jamel Bulgaria 

ORCID: 0009-0007-5269-5739 

Affiliation: OptimizeYourCapabilities.com 

Contact: admin@optimizeyourcapabilities.com 

License: CC-BY 4.0 

Status: Canonical Appendix (TS-21) 

 

0. Purpose and Canonical Position 

Appendix A defines the pseudocode implementation of the Knowledge Graph 

Population Pipeline described in TS-21. 

It operationalizes: 

• extraction 

• normalization 

• instantiation 

• inference enrichment 

• constraint enforcement 

This appendix introduces no new emotional constructs. 

It defines the executable logic that ensures the CEF-KG remains canonical, 

identity-preserving, and contamination-free. 

 

1. High-Level Pipeline Structure 

function Populate_CEF_KG(inputSources): 

https://orcid.org/0009-0007-5269-5739
https://www.optimizeyourcapabilities.com/
file:///C:/Users/nishm/OneDrive/Documents/admin@optimizeyourcapabilities.com


    extracted = extractEntities(inputSources) 

    normalized = normalizeEntities(extracted) 

    instantiated = instantiateGraph(normalized) 

    enriched = applyInference(instantiated) 

    validated = enforceConstraints(enriched) 

    return validated 

The pipeline always executes in this order: 

1. Extraction 

2. Normalization 

3. Instantiation 

4. Inference Enrichment 

5. Constraint Enforcement 

 

2. Extraction Stage 

function extractEntities(sources): 

    entities = new EntitySet() 

 

    for each source in sources: 

        if conformsToTS18(source): 

            entities.add(parseOntology(source)) 

 

        if conformsToJSONLD(source): 

            entities.add(parseJSONLD(source)) 

 

        if conformsToRDF(source): 

            entities.add(parseRDF(source)) 

 

        if conformsToELSeries(source): 



            entities.add(parseLexicon(source)) 

 

    return entities 

Extraction Rules 

• Only canonical sources allowed 

• No external emotional constructs 

• No non-CEF categories 

 

3. Normalization Stage 

function normalizeEntities(entities): 

    state = new NormalizedState() 

 

    state.operatorVector = normalizeOperators(entities) 

    state.facetVector = normalizeFacets(entities) 

    state.centerVector = normalizeCenters(entities) 

    state.modulationMatrix = normalizeModulation(entities) 

    state.transitionGraph = normalizeTransitions(entities) 

    state.coherenceScalar = computeCoherence(entities) 

 

    return state 

Normalization Rules 

• Identity must be preserved 

• Facet ordering must follow TS-11 

• No contamination 

 

4. Instantiation Stage 

function instantiateGraph(state): 

    graph = new Graph() 



 

    for each operator in state.operatorVector: 

        graph.addNode(operator) 

 

    for each facet in state.facetVector: 

        graph.addNode(facet) 

        graph.addEdge(facet.belongsToOperator, facet, "hasFacet") 

 

    for each center in state.centerVector: 

        graph.addNode(center) 

 

    instantiateTransitions(graph, state.transitionGraph) 

    instantiateModulation(graph, state.modulationMatrix) 

    instantiateParameters(graph, state) 

 

    return graph 

Instantiation Rules 

• Node types must match TS-18 

• Edge types must match TS-20 

• No new operators, facets, or centers 

 

5. Inference Enrichment Stage 

function applyInference(graph): 

    inferred = copy(graph) 

 

    inferred = inferIdentity(inferred) 

    inferred = inferDirectionality(inferred) 

    inferred = inferModulation(inferred) 



    inferred = inferStability(inferred) 

    inferred = inferPrediction(inferred) 

    inferred = inferPlasticity(inferred) 

    inferred = inferGovernance(inferred) 

 

    return inferred 

Inference Rules 

• Must follow TS-19 Appendix A 

• No inference drift 

• No new emotional constructs 

 

6. Constraint Enforcement Stage 

function enforceConstraints(graph): 

    if violatesIdentity(graph): 

        rollback(graph) 

 

    if violatesDirectionality(graph): 

        rollback(graph) 

 

    if violatesModulation(graph): 

        rollback(graph) 

 

    if violatesFacetBoundaries(graph): 

        rollback(graph) 

 

    if violatesPredictiveRules(graph): 

        rollback(graph) 

 



    if violatesPlasticityRules(graph): 

        rollback(graph) 

 

    if violatesGovernanceRules(graph): 

        rollback(graph) 

 

    return graph 

Constraint Rules 

• No facet migration 

• No operator merging 

• No center blending 

• No illegal transitions 

• No illegal modulation 

• No predictive contradictions 

• No facet inversion 

• No coherence violations 

 

7. Update Pipeline (Incremental Updates) 

function Update_CEF_KG(graph, update): 

    if update.type == "parameter": 

        applyParameterUpdate(graph, update) 

 

    if update.type == "inference": 

        graph = applyInference(graph) 

 

    enforceConstraints(graph) 

    return graph 

Update Rules 



• Only parameter updates allowed 

• No structural updates 

• All updates must pass constraint validation 

 

8. Canonical Status 

Appendix A is the authoritative pseudocode specification for TS-21. 

It defines the executable logic for population, integration, and maintenance of the 

CEF-KG. 

It is subordinate only to: 

• Core Essence Document 

• TS-1 → TS-21 

 

 

 

 

 


