Core Emotion Framework (CEF): TS
21 Appendix A — Population
Pipeline Pseudocode

Canonical Execution Logic for CEF-KG Population & Integration
Version 1.0 — Phase 4

Author: Jamel Bulgaria

ORCID: 0009-0007-5269-5739

Affiliation: OptimizeYourCapabilities.com
Contact: admin@optimizeyourcapabilities.com
License: CC-BY 4.0

Status: Canonical Appendix (TS-21)

0. Purpose and Canonical Position

Appendix A defines the pseudocode implementation of the Knowledge Graph
Population Pipeline described in TS-21.

It operationalizes:
o extraction

normalization

instantiation

inference enrichment

constraint enforcement

This appendix introduces no new emotional constructs.
It defines the executable logic that ensures the CEF-KG remains canonical,
identity-preserving, and contamination-free.

1. High-Level Pipeline Structure

function Populate_CEF_KG(inputSources):


https://orcid.org/0009-0007-5269-5739
https://www.optimizeyourcapabilities.com/
file:///C:/Users/nishm/OneDrive/Documents/admin@optimizeyourcapabilities.com

extracted = extractEntities(inputSources)
normalized = normalizeEntities(extracted)
instantiated = instantiateGraph(normalized)
enriched = applylnference(instantiated)
validated = enforceConstraints(enriched)

return validated

The pipeline always executes in this order:

1. Extraction

2. Normalization

3. Instantiation

4. Inference Enrichment

5. Constraint Enforcement

2. Extraction Stage

function extractEntities(sources):

entities = new EntitySet()
for each source in sources:
if conformsToTS18(source):

entities.add(parseOntology(source))

if conformsToJSONLD(source):

entities.add(parseJSONLD(source))

if conformsToRDF(source):

entities.add(parseRDF(source))

if conformsToELSeries(source):



entities.add(parseLexicon(source))

return entities
Extraction Rules
e Only canonical sources allowed
e No external emotional constructs

e No non-CEF categories

3. Normalization Stage
function normalizeEntities(entities):

state = new NormalizedState()

state.operatorVector = normalizeOperators(entities)
state.facetVector = normalizeFacets(entities)
state.centerVector = normalizeCenters(entities)
state.modulationMatrix = normalizeModulation(entities)
state.transitionGraph = normalizeTransitions(entities)

state.coherenceScalar = computeCoherence(entities)

return state
Normalization Rules
e Identity must be preserved
e Facet ordering must follow TS-11

« No contamination

4. Instantiation Stage
function instantiateGraph(state):

graph = new Graph()



for each operator in state.operatorVector:

graph.addNode(operator)

for each facet in state.facetVector:
graph.addNode(facet)

graph.addEdge(facet.belongsToOperator, facet, "hasFacet")

for each center in state.centerVector:

graph.addNode(center)

instantiateTransitions(graph, state.transitionGraph)
instantiateModulation(graph, state.modulationMatrix)

instantiateParameters(graph, state)

return graph
Instantiation Rules
e Node types must match TS-18
o Edge types must match TS-20

« No new operators, facets, or centers

5. Inference Enrichment Stage
function applylnference(graph):

inferred = copy(graph)

inferred = inferldentity(inferred)
inferred = inferDirectionality(inferred)

inferred = inferModulation(inferred)



inferred = inferStability(inferred)
inferred = inferPrediction(inferred)
inferred = inferPlasticity(inferred)

inferred = inferGovernance(inferred)

return inferred
Inference Rules
e Must follow TS-19 Appendix A
e Noinference drift

« No new emotional constructs

6. Constraint Enforcement Stage
function enforceConstraints(graph):
if violatesldentity(graph):

rollback(graph)

if violatesDirectionality(graph):

rollback(graph)

if violatesModulation(graph):

rollback(graph)

if violatesFacetBoundaries(graph):

rollback(graph)

if violatesPredictiveRules(graph):

rollback(graph)



if violatesPlasticityRules(graph):

rollback(graph)

if violatesGovernanceRules(graph):

rollback(graph)

return graph
Constraint Rules
e No facet migration
e No operator merging
e No center blending
e Noillegal transitions
e Noillegal modulation
e No predictive contradictions
e No facet inversion

« No coherence violations

7. Update Pipeline (Incremental Updates)
function Update_CEF_KG(graph, update):
if update.type == "parameter":

applyParameterUpdate(graph, update)

if update.type == "inference":

graph = applylnference(graph)

enforceConstraints(graph)
return graph

Update Rules



e Only parameter updates allowed
e No structural updates

e All updates must pass constraint validation

8. Canonical Status

Appendix A is the authoritative pseudocode specification for TS-21.

It defines the executable logic for population, integration, and maintenance of the
CEF-KG.

It is subordinate only to:

e Core Essence Document

e TS-1-5>TS-21



