

Core Emotion Framework (CEF): Technical Specification 4 (TS-4)

Simulation & Modeling Protocols

Canonical Architecture-Level Document — Version 1.0

Jamel Bulgaria

ORCID: <https://orcid.org/0009-0007-5269-5739>

Affiliation: OptimizeYourCapabilities.com

Contact: jamebulgaria@gmail.com

Version: 1.0

Date: 2025-12-29

License: CC BY 4.0

Abstract

The Core Emotion Framework (CEF) Technical Specification 4 (TS-4) defines the canonical simulation and modeling protocols for computational implementations of the CEF. Whereas TS-1 establishes the operational mechanics of centers, processes, operators, and activation dynamics, TS-2 defines the empirical validation architecture, and TS-3 specifies the computational structures and update rules, TS-4 provides the formal procedures, protocols, and methodological standards for running simulations, conducting computational experiments, and generating model-based predictions. TS-4 is an architecture-level document: it defines simulation logic, perturbation methods, stability analyses, and reproducibility requirements without prescribing programming languages, software platforms, or applied case studies.

1. Purpose and Scope

1.1 Purpose

TS-4 establishes the canonical simulation and modeling protocols for the CEF. It defines:

- simulation types and modeling paradigms
- initialization procedures and boundary conditions
- perturbation and intervention methods
- stability, convergence, and divergence analyses
- fusion and overflow detection algorithms
- directionality stress-testing procedures
- reproducibility and reporting standards

TS-4 operationalizes the computational architecture defined in TS-3 and provides the methodological foundation for computational experiments, predictive modeling, and simulation-based validation.

1.2 Scope

TS-4 defines:

- simulation cycle protocols
- perturbation and intervention frameworks
- stability and sensitivity analyses
- model comparison and evaluation procedures
- reproducibility and documentation standards

TS-4 does **not** include:

- programming language implementations
- software engineering patterns
- code examples
- applied simulations or case studies

TS-4 is subordinate to TS-1, TS-2, and TS-3 and must be interpreted in accordance with their definitions and constraints.

2. Simulation Types

2.1 Deterministic Simulations

Deterministic simulations use fixed update rules and produce identical results for identical initial conditions. They are used for:

- baseline modeling
- directionality testing
- stability analysis
- identity preservation checks

2.2 Stochastic Simulations

Stochastic simulations introduce controlled randomness into:

- activation updates
- perturbation timing
- noise injection

They are used for:

- robustness testing

- sensitivity analysis
- cross-method convergence

2.3 Hybrid Simulations

Hybrid simulations combine deterministic update rules with stochastic perturbations. They are used for:

- stress-testing directionality
- modeling real-world variability
- testing chronic fusion emergence

2.4 Multi-Agent Simulations

Multi-agent simulations instantiate multiple CEF systems interacting through:

- shared environments
- communication channels
- emotional contagion pathways

They are used for:

- group-level modeling
- social dynamics
- emergent behavior analysis

3. Initialization Protocols

3.1 Initial Activation Values

Simulations must specify:

- operator activation values
- center activation values
- process vector values

Initial values may be:

- neutral
- biased
- randomized
- empirically derived

3.2 Boundary Conditions

Boundary conditions define:

- activation limits
- center capacity thresholds
- fusion and overflow thresholds

3.3 Structural Integrity Checks

Before simulation begins, the system must verify:

- operator identity preservation
- center structure integrity
- directionality graph validity
- matrix dimensionality consistency

4. Perturbation and Intervention Methods

4.1 Activation Perturbations

Perturbations may target:

- individual operators
- entire centers
- process vectors

Perturbations may be:

- instantaneous
- sustained
- periodic
- stochastic

4.2 Directionality Perturbations

Directionality edges may be:

- strengthened
- weakened
- temporarily disabled

Used for:

- stress-testing
- sensitivity analysis
- validation of canonical pathways

4.3 Structural Perturbations

Structural perturbations modify:

- matrix weights
- center aggregation rules
- operator influence patterns

Used for:

- robustness testing
- model comparison
- falsifiability analysis

5. Simulation Cycle

5.1 Update Order

Simulations must specify whether updates are:

- synchronous
- asynchronous
- center-first
- operator-first
- process-first

5.2 Iteration Rules

Simulations proceed through:

- fixed iteration counts
- convergence-based stopping
- divergence detection
- oscillation detection

5.3 Logging Requirements

Simulations must record:

- state vectors at each iteration
- activation trajectories
- fusion and overflow events
- perturbation timing
- convergence metrics

6. Stability and Convergence Analysis

6.1 Stability Criteria

A simulation is stable when:

- activation values remain within bounds
- transitions converge
- no oscillatory patterns emerge
- no chronic fusion is induced

6.2 Divergence Detection

Divergence is detected when:

- activation values exceed limits
- oscillations increase in amplitude
- directionality violations accumulate
- structural integrity is lost

6.3 Sensitivity Analysis

Sensitivity analysis evaluates:

- parameter dependence
- perturbation response
- noise robustness

7. Fusion and Overflow Detection

7.1 Fusion Detection Algorithms

Fusion is detected when:

- cross-center modulation exceeds thresholds
- temporary coupling emerges
- operator identity remains intact

7.2 Chronic Fusion Detection

Chronic fusion is detected when:

- co-activation persists across iterations
- rigidity emerges
- modulation fails to resolve

7.3 Overflow Detection

Overflow is detected when:

- activation exceeds home-center capacity
- cross-center propagation occurs
- identity preservation is maintained

8. Directionality Stress-Testing

8.1 Intra-Center Stress Tests

Tests include:

- sequential activation perturbations
- reverse-direction challenges
- forced-order violations

8.2 Inter-Center Stress Tests

Tests include:

- cross-center activation shocks
- delayed propagation
- asymmetric influence challenges

8.3 Graph Integrity Tests

Graph integrity is evaluated through:

- edge removal
- edge inversion
- weight scaling

9. Model Comparison and Evaluation

9.1 Baseline Model

The canonical CEF model defined in TS-1 through TS-3.

9.2 Alternative Models

Alternative models may vary:

- matrix structures
- update rules
- directionality patterns

9.3 Evaluation Metrics

Metrics include:

- stability
- convergence
- predictive accuracy
- robustness
- identity preservation

10. Reproducibility Standards

10.1 Random Seed Handling

Simulations must specify:

- seed initialization
- seed storage
- seed reporting

10.2 Parameter Documentation

All parameters must be documented, including:

- activation limits
- matrix weights
- perturbation schedules

10.3 Output Archiving

Simulations must archive:

- state histories
- convergence metrics
- perturbation logs

11. Canonical Status

TS-4 is the authoritative simulation and modeling protocol specification of the CEF.

It is subordinate to TS-1, TS-2, and TS-3 and defines the methodological rules for all computational experiments, simulations, and model-based analyses.
